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STABILITY IN L1 OF CIRCULAR VORTEX PATCHES

THOMAS C. SIDERIS AND LUIS VEGA

(Communicated by Walter Craig)

Abstract. The motion of incompressible and ideal fluids is studied in the
plane. The stability in L1 of circular vortex patches is established among the
class of all bounded vortex patches of equal strength.

For planar incompressible and ideal fluid flow, the theory of Yudovich [9] es-
tablishes global well-posedness of the initial value problem with initial vorticity
in L1(R2) ∩ L∞(R2). Because vorticity is transported in 2d, it remains constant
along particle trajectories. If Φt is the flow map, then the vorticity is given by
ω(t,Φt(y)) = ω(0, y), for all t > 0 and y ∈ R

2. When the initial vorticity is a
patch of unit strength, represented by the indicator (characteristic) function IΩ0

of
a bounded open set Ω0 ⊂ R

2, the resulting vorticity is IΩt
, with Ωt = Φt(Ω0). In

the special case when Ω0 is equal to a ball B, the patch is stationary, Φt(B) = B,
for all t > 0. Theorem 3, our main result, gives the stability in L1(R2) of any
circular patch within the class of all bounded vortex patches of equal strength. No
restriction is placed on the L1 distance of the perturbation to the ball, and the flow
region is not limited to a bounded domain, but rather is the entire space R

2.
Wan and Pulvirenti [8] were the first to study stability of vortex patches in

L1. They considered the case where the flow was contained in a bounded region,
although for the stability of circular patches they mention that this assumption
can be removed. Their key estimate, (J), shows that the total angular momenta
of the patches can be used to control the L1 difference between an arbitrary patch
and a circular patch of the same total mass. They allow the strengths of the
patches to differ, in which case the two patches are assumed to be close in L1.
Our generalization of their inequality, given in Lemma 2, estimates the L1 distance
of an arbitrary patch to a circular patch when both patches have equal strength.
Stability in L1, given in Theorem 3, follows immediately. Weaker stability results
were given by Saffman [7] and Dritschel [4]. Dritschel controls the measure of the
symmetric difference of two patches through a convenient integral, and this idea is
incorporated into our argument in Lemma 1.

Stability in L1 does not imply that the boundaries of the two patches remain
close in any metric. Indeed, numerical simulations give strong evidence of fingering
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and filamentation; see [1, 3]. Spreading of vorticity may also occur. The best upper
bound for the growth rate of the patch diameter is O(t log t)1/4 given in [5]; see also
[6]. Nevertheless, in spite of the fact that the patch geometry may be complicated,
smoothness of smooth patch boundaries persists for all time; see [2].

For any bounded open set A ⊂ R
2, denote its mass, momentum, and angular

momentum by

|A| =
∫
A

dx, M(A) =

∫
A

x dx, and i(A) =

∫
A

|x|2dx,

respectively. Our arguments depend heavily upon the fact that these three quanti-
ties are conserved in time when A = Ωt is a patch moving with the flow.

Lemma 1. If A ⊂ R
2 is any bounded open set, then

i(A)− |A|2
2π

− |M(A)|2
|A| ≥ 0.

Equality holds if and only if the set A is a ball.

Proof. For any ball Br(x0) = {x ∈ R
2 : |x− x0| < r}, introduce the quantity

(1) Q = Q(A;Br(x0)) =

∫

A�Br(x0)

∣∣|x− x0|2 − r2
∣∣ dx,

in which A�Br(x0) = (A\Br(x0))∪(Br(x0)\A) denotes the symmetric difference.
Note that Q ≥ 0 and Q = 0 if and only if A = Br(x0).

The quantity Q can also be written as

Q =

∫
A

(|x− x0|2 − r2) dx+

∫
Br(x0)

(r2 − |x− x0|2) dx,

since the portions of these two integrals over the set A ∩ Br(x0) cancel each other
out.

Now, we can expand the first integral in Q and compute the second to obtain

Q = i(A)− 2x0 ·M(A) + (|x0|2 − r2)|A|+ π

2
r4.

A rearrangement of terms gives

(2) Q = i(A)− |A|2
2π

− |M(A)|2
|A| +

1

2π

(
πr2 − |A|

)2
+ |A|

∣∣∣∣x0 −
M(A)

|A|

∣∣∣∣
2

.

This last expression is minimized by choosing Br(x0) with the same mass and center
of mass as A:

|Br(x0)| = πr2 = |A| and x0 =
M(A)

|A| .

With this choice, the lemma now follows. �

Lemma 2. If B = Br(0), then for any bounded open set A,

‖IA − IB‖2L1 ≤ 4π Q(A;B),

in which Q(A;B) is defined by (1). Equality holds if and only if

(3) A = Ba(0) ∪ [Bb(0) \Br(0)],

with a < r < b and r2 − a2 = b2 − r2.
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Proof. Using the identity (2) and then Lemma 1, we have for any bounded open
set A′,

(4) (|A′| − |B|)2 = (|A′| − πr2)2 ≤ 2π Q(A′;B),

with equality if and only if A′ is a ball centered at the origin.
Next, we note that

‖IA − IB‖2L1 = |A∆B|2

= (|A \B|+ |B \A|)2

≤ 2|A \B|2 + 2|B \A|2

= 2(|A ∪B| − |B|)2 + 2(|A ∩B| − |B|)2,
with equality if and only if |A \B| = |B \A|.

Application of (4) with A′ = A ∪B and A′ = A ∩B yields

2(|A ∪B| − |B|)2 + 2(|A ∩B| − |B|)2

≤ 4π [Q(A ∪B;B) +Q(A ∩B;B)] = 4π Q(A;B),

with equality if and only if A ∪B and A ∩B are balls centered at the origin. This
establishes the desired inequality.

The argument also shows that equality holds if and only if A ∪ B = Bb(0),
A ∩B = Ba(0), with a < r < b, and

|Bb(0) \B| = |A \B| = |B \A| = |B \Ba(0)|,
which gives (3). �

Theorem 3. Let B = Br(0). Then for any bounded open set Ω0 ⊂ R
2, we have

that

‖IΩt
− IB‖2L1 ≤ 4π sup

Ω0�B

∣∣|x|2 − r2
∣∣ ‖IΩ0

− IB‖L1 ,

for all t > 0.

Proof. The identity (2) shows that the quantityQ(Ωt;B) depends only on conserved
quantities, and it is therefore also conserved. In other words, we have Q(Ωt;B) =
Q(Ω0;B), for all t > 0. Thus, the result follows from Lemma 2 and the fact that

Q(Ω0;B) ≤ sup
Ω0�B

∣∣|x|2 − r2
∣∣ |Ω0�B| = sup

Ω0�B

∣∣|x|2 − r2
∣∣ ‖IΩ0

− IB‖L1 .

�
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